

2022 SCHEME **–AGLAE'**S PROFICIENCY TESTS

	Fresh w
Base parameters	Cost
1A Chemical analyses in fresh waters	310
1Ab Chemical analyses in fresh waters at low concentration levels	225
1D Field parameters in fresh waters	240
1E Dissolved oxygen in fresh waters	130
1G Dry residue in fresh waters	90
50 Perchlorates and disinfection by-products in fresh waters	250
Organoleptic parameters	Cost
91 Odour and flavour in waters intended for human consumption	200
Metals	Cost
3A Metals in fresh waters	575
3D Cr ⁶⁺ in waters	175
Indicators and indexes	Cost
1B Indicators in fresh waters	175
1C Chlorophyll a and pheopigments index in fresh waters	205
5A Global indexes in fresh waters	230
5C Total hydrocarbons index in waters	250
5D Volatile hydrocarbons index in waters	185

waters		
	Organic pollutants	Cost
1	4C VOHs and benzene derivatives in fresh waters	530
	4Cb VOHs and benzene derivatives in fresh waters	300
-	at low concentration levels	
-	20A Chlorophenols in fresh waters	195
-	21A Alkylphenols in fresh waters	195
-	22A Chloroanilines in fresh waters	165
	23A Organotin compounds in fresh waters	195
	24A Brominated Diphenyl Ethers in fresh waters	255
	24C HBCDD in fresh waters and HBCDD, HBB in waste waters	400
	25A Biphenyl in fresh waters	225
	26A Phthalates in fresh waters	235
	27A C10-C13 chloroalkanes (SCCPs) in fresh waters	225
	28A Haloacetic acids in fresh waters	250
1	29A Epichlorohydrin in fresh waters	195
	52 AOX in waters	355
1	54 Toxins of cyanobacteria in fresh waters	1700
	55 Glyphosate, AMPA and other herbicides in fresh waters	450
1	57 Pharmaceuticals in fresh waters	815
_	58 Bisphenol A and S in fresh waters	215
	59 Perfluorinated compounds in fresh waters	455
	64 PAHs and PCBs in fresh waters	850
	65A Pesticides and degradation residues - List 1 - in	515
	fresh waters	313
	65B Pesticides and degradation residues – List 2 - in fresh waters	550
	65C Pesticides and degradation residues - List 3 - in fresh waters	465
	65D Pesticides and degradation residues - List 4 - in fresh waters	270
	65E Parabens in fresh waters	225
-> 4/	65F Pesticides and degradation residues - List 5 - in	
9W	fresh waters	450
2 W	65G Pesticides and degradation residues - List 6 - in fresh waters	135
	67 Acrylamide in fresh waters	200
	69 Metabolites of chloroacetamides in fresh	
	waters	350

New

New

2022 SCHEME **–AGLAE'**S PROFICIENCY TESTS

Non atypical natural mineral waters	Cost
3C Metals in non-atypical natural mineral waters	270
92 BTEX and VOC in atypical and non-atypical natural	550
mineral waters	

Atypical natural mineral waters	Cost
3E Metals in sparkling waters	190
3F Metals in highly mineralised mineral waters	190
90 Chemical analyses in sparkling waters	175
90A Chemical analyses in highly mineralised mineral waters	150
92 BTEX and VOC in atypical and non-atypical natural mineral waters	550
93 Dry residue in atypical natural mineral waters	90
94 PAHs and organochlorine pesticides in carbogaseous waters	425

Swim	ıming p
Base parameters	Cost
1H Physico-chemical indicators in swimming pool waters	260
50A Disinfection by-products in swimming pool waters	150

JOI Waters		
	Organic pollutants	Cost
	66 THMs in swimming pool waters	180

Saline waters	Cost
6 Chemical analyses in saline waters	675
7 Metals in saline waters	150

New

	Sampling and <i>in situ</i> measurements	Cost
	100A In situ measurements and sampling in different types of waters - Nord	700
/	100C In situ measurements and sampling in different types of waters - Rhône	700
	1001 In situ measurements and sampling in different types of waters - Creuse	700
	101A Sampling using automatic samplers in treatment plant - Nord	700
	102D Flowmetry - Creuse	300

2022 SCHEME **–AGLAE'**S PROFICIENCY TESTS

	Waste
Base parameters and indicators	Cost
2A Chemical analyses in waste waters	220
2B Indicators in waste waters	280
2C Indicators in waste waters at low concentration levels	150
2D Field parameters and colour in waste waters	100
Indexes and metals	Cost
3B Metals in waste waters	580
3D Cr ⁶⁺ in waters	175
5B Global indexes in waste waters	265
5C Total hydrocarbons index in waters	250
5D Volatile hydrocarbons index in waters	185
Organic pollutants	
4E VOHs and benzene derivatives in waste waters	570
4Eb VOHs and benzene derivatives in waste waters at	370
low concentration levels	320
4F Methanol in waste waters	100
20B Chlorophenols in waste waters	195
21B Alkylphenols in waste waters	195

Organic pollutants	Cost
22B Chloroanilines in waste waters	165
23B Organo-tin compounds in waste waters	195
24B Brominated Diphenyl Ethers in waste waters	255
24C HBCDD, HBB in waste waters	400
25B Biphenyl in waste waters	225
26B DEHP in waste waters	225
27B C10-C13 chloroalkanes (SCCPs) in waste waters	225
28B Chloroacetic acid in waste waters	195
29B Epichlorohydrin in waste waters	195
52 AOX in waters	355
55A Glyphosate, AMPA and aminotriazole in waste waters	450
59A Perfluorinated compounds in waste waters	300
71 PAHs and PCBs in waste waters	850
72A Pesticides and degradation residues - List 1 - in waste waters	850
72B Pesticides and degradation residues - List 2 - in waste waters	495
73 Alkylphenol ethoxylates in waste waters	300

Chemistry in solid matrices	Cost
9 Chemical analyses and metals in sediments	400
10 Organic micropollutants in sediments	540
40 Chemical analyses and metals in recoverable sewage sludges	500
41 Organic micropollutants in recoverable sewage sludges	570
43 Chemical analyses and metals in contaminated sites and soils	300
44 Organic micropollutants in contaminated sites and soils	450
51 Chemical analyses and metals in waste (leaching)	685
51A Cyanides and phenol index in waste (leaching)	600
51B Chemical analyses and metals in waste (leaching) - 'LAGA/DepV'	400
120 Solid fuel products	150

AGLAE Association
Parc des Pyramides
427 rue des Bourreliers
59320 Hallennes lez Haubourdin - FRANCE
\$\tilde{T}

2022 SCHEME **-AGLAE'S** PROFICIENCY TESTS

	Microbiology in waters	Cost
	11 Microbial indicators of faecal contamination by MPN method	425
	30 Microbiology in clean waters	744
	30A Spores of sulfite-reducing anaerobes in fresh surface waters and waste waters	260
	31 <i>Pseudomonas aeruginosa</i> and pathogenic staphylococci in clean waters	510
New	31A Pathogenic staphylococci in saline waters	200
140	32 <i>Legionella</i> and <i>Legionella pneumophila</i> in clean waters by culture	558
	33 <i>Legionella</i> and <i>Legionella pneumophila</i> in waste waters by culture	610
	35 Legionella and Legionella pneumophila in clean waters by PCR	600
	36 Legionella and Legionella pneumophila in waste waters by PCR	700
	37 Salmonella in clean and surface waters	150
	38 Yeasts in clean waters	150
	38A Mould in clean waters	100

Biology and ecotoxicology	Cost
12 Macroinvertebrates of running waters	750
13 Ecotoxicology	500
16 Biological Diatom Index	300
34 Protozoans in clean waters	650

'Clean waters' depend on the programmes (check programmes' description), materials are suitable for the check of analyses in public distribution waters, non-atypical natural mineral waters, swimming pool waters, waters for whirlpool baths, waters for multi-jet showers, healthcare waters and bacteriologically controlled waters.

Medical biology	Cost
80 Cytobacteriology of urines	405
80A Urinary antigens - Legionella	200
80B Urinary antigens - pneumococcus	200
84 Coproculture	585
85 Blood culture - bacteraemia - complete analysis of the process	535
85A Blood culture - bacteraemia - qualitative culture	300
87 Cytobacteriology of the cerebrospinal fluid	295
88 Bacteriology of sputum	270
89 Blood culture: fungaemia	275

Waters for medical use	Cost
82 Endotoxins in waters as described in the pharmacopoeia	336
83A Microbiology in waters similar to dialysate	368
83B Microbiology in waters similar to endoscope verification solutions	310
86 Indicator germs by filtration in bacteriologically controlled waters	250
86B Indicator germs in waters similar to pharmaceutical process waters	250

150	
130	

Cosmetics		Cost
110 Challenge test	New	500

Find the content of each programme in the catalogues Environment or Medical Biology - Hospital Hygiene

An English version of test documents is available for almost all the tests